Парабола. Параметр (с) по графику. Система двух уравнений

Задания на график квадратичной функции, в которых свободное слагаемое — параметр (с) можно определить по графику, а для нахождения остальных параметров необходимо решить систему двух линейных уравнений с двумя неизвестными

Теория

Дан график функции f(x)=ax^2+bx+c. Если x=0, то f(x)=c. Таким образом, парабола пересекает вертикальную ось Oy в точке, вторая координата которой равна параметру c. Иногда это значение можно определить по графику


Тренажер (версия для печати)


Вариант 1

Задание 1-1

Дан график функции f(x)=ax^2+bx+c. Найти f(8)

Ответ
108

Задание 1-2

Дан график функции f(x)=ax^2+bx+c. Найти f(-5)

 

Ответ
-43

Задание 1-3

Дан график функции f(x)=ax^2+bx+c. Найти значение параметра b

Ответ
-5

Задание 1-4

Дан график функции f(x)=ax^2+bx+c. Найти положительное значение x, при котором f(x)=-20

Ответ
2
Вариант 2

Задание 2-1

Дан график функции f(x)=ax^2+bx+c. Найти f(-5)

 

 

Ответ
29

Задание 2-2

Дан график функции f(x)=ax^2+bx+c. Найти f(7)

 

 

Ответ
30

Задание 2-3

Дан график функции f(x)=ax^2+bx+c. Найти значение параметра b

 

Ответ
-8

Задание 2-4

Дан график функции f(x)=ax^2+bx+c. Найти отрицательное значение x, при котором f(x)=-25

 

Ответ
-2

26-06-24-01

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.